Oxidation Numbers

- The oxidation numbers that are assigned to elements (and polyatomic ions) come from the charge they aquire after bonding has occurred.
- Atoms are electrically balanced (neutral) because they have an equal number of protons and electrons. For instance, aluminum (Al) has 13 protons (13+) and 13 electrons (13-). The positive and negative charges cancel each other out.

Aluminum 13 protons 13+ 13 electrons 13charge = 0

- If an atom loses 1 electron, it is no longer an atom... it is an **ion**. In fact, it is an ion with a charge of 1+. It has a 1+ charge because it now has 1 less electron that it has protons and is no longer electrically balanced.
- Using aluminum as an example again, we find that in a chemical reaction, aluminum normally **loses 3 electrons** which results in a **postively charged aluminum ion** with 13 protons (13+) and only 10 electrons (10-).
 - Aluminum 13 protons 13+ 10 electrons <u>10-</u> charge = 3+
- This aluminum ion now has three positive charges that are unopposed by negative charges. It has a 3+ charge. Aluminum is said to have a 3+ oxidation number.

OXIDATION NUMBERS OF SOME COMMON ELEMENTS AND POLYATOMIC IONS

ELEMENTS]					
AI	aluminur	n	3+		Fe	iron (II)	2+
Ва	barium		2+		Fe	iron (II	I)	3+
Be	beryllium		2+		F	fluorine		1-
В	boron		3+		Ge	germanium		4+
Bi	bismuth		3+		Au gold(I)			1+
Br	bromine		1-, 5+		Au	gold(III)		3+
С	carbon		4+,2+		Н	hydrogen		1+,1-
Ca	calcium		2+	F I		iodine		1-
Cd	cadmium	1 I	2+		Р	phosphorus		5+, 3+, 3-
CI	chlorine		1-, 5+, 7+		Pb	lead(II)		2+,3+,3-
Cr	chromiur	n	3+,2+,6+		Pb	lead (l	V)	4+
Co	cobalt		2+,3+		Li	lithium		1+
Cs	cesium		1+		Mg	magnesium		2+
Cu	copper (I)		1+		Mn	manga	inese	2+,7+,4+
Cu	copper (II)		2+		Hg	mercu	ry(l)	1+
SOME COMMON POLYATOMIC IONS								
acetate	C ₂ H ₃	02	1-		carbonate	e CO ₃		2-
ammonium	4		1+		chlorate	CIO3		1-
bicarbonate	HCO	3	1-		cyanide	CN		1-
bisulfate	HSO ₂	Ļ	1-		hydroxide	OH		1-

Hg	mercury(III)	3+
Ν	nitrogen	3-
Ni	nickel	2+
0	oxygen	2-
К	potassium	1+
Se	selenium	2-
Si	silicon	4+
Ag	silver	1+
Na	sodium	1+
S	sulfur	2-, 4+, 6+
Sn	tin(II)	2+
Sn	tin(IV)	4+
W	tungsten	6+
U	uranium	6+, 4+
Zn	zinc	2+

nitrate	NO3	1-
permanganate	MnO ₄	1-
phosphate	P04	3-
sulfate	SO4	2-

Note: bicarbonate is also called hydrogen carbonate and bisulfate is also called hydrogen sulfate.